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in fMRI signal have been used to map several consistent resting state networks in
the brain. Using the posterior cingulate cortex as a seed region, functional connectivity analyses have found
not only positive correlations in the default mode network but negative correlations in another resting state
network related to attentional processes. The interpretation is that the human brain is intrinsically organized
into dynamic, anti-correlated functional networks. Global variations of the BOLD signal are often considered
nuisance effects and are commonly removed using a general linear model (GLM) technique. This global signal
regression method has been shown to introduce negative activation measures in standard fMRI analyses. The
topic of this paper is whether such a correction technique could be the cause of anti-correlated resting state
networks in functional connectivity analyses. Here we show that, after global signal regression, correlation
values to a seed voxel must sum to a negative value. Simulations also show that small phase differences
between regions can lead to spurious negative correlation values. A combination breath holding and visual
task demonstrates that the relative phase of global and local signals can affect connectivity measures and
that, experimentally, global signal regression leads to bell-shaped correlation value distributions, centred on
zero. Finally, analyses of negatively correlated networks in resting state data show that global signal
regression is most likely the cause of anti-correlations. These results call into question the interpretation of
negatively correlated regions in the brain when using global signal regression as an initial processing step.

© 2008 Published by Elsevier Inc.
Introduction

Spontaneous fluctuations in blood oxygenation level dependent
(BOLD) fMRI signals have recently aroused a large amount of interest
in the fMRI literature (Fox and Raichle, 2007). These fluctuations are
often correlated between functionally related areas and can occur
either on top of task-induced signal modulations (Fox et al., 2006) or
in the absence of an explicit task (Biswal et al., 1995). It has been
hypothesized that correlated fluctuations reflect synchronized varia-
tions in the neuronal activity of discrete brain areas and are
representative of functional connections within networks of the
brain. Functional connectivity analyses can investigate these coherent
signal fluctuations, characterized by their low frequency (∼0.1 Hz)
(Lowe et al., 1998). By studying fluctuations at rest, researchers have
claimed that the brain is intrinsically organized into dynamic, anti-
correlated functional networks (Fox et al., 2005; Fransson, 2005;
Greicius et al., 2003). The extent towhich a commonly used correction
method called global signal regression alters functional connectivity
gnition, National Institute of
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maps by introducing anti-correlated time series is the topic of this
paper.

Biswal et al. first reported the correlation in fMRI signal fluctua-
tions between the left and right motor cortices when the brain was at
“rest” (Biswal et al., 1995). Subsequent studies have identified several
consistent resting state networks, including motor, auditory, visual,
attention and default mode (Damoiseaux et al., 2006; De Luca et al.,
2006; Greicius et al., 2003). The default mode network is of particular
interest since it appears to be more active during rest than during task
(Raichle et al., 2001). It has been hypothesized that this activation is
indicative of internal monitoring, e.g. “day-dreaming” or a “wandering
mind” (Buckner et al., 2008; Mason et al., 2007). Early clinical studies
have attributed disruptions in the connections between nodes of the
default mode network to disorders such as Alzheimer's disease
(Greicius et al., 2004), schizophrenia (Garrity et al., 2007), ADHD
(Sonuga-Barke and Castellanos, 2007) and autism (Just et al., 2007;
Kennedy et al., 2006).

The common assumption in most fMRI investigations of con-
nectivity is that correlated fluctuations in resting state networks are
neuronal in origin. However, other sources of fluctuations exist in fMRI
data that are not directly related to local neuronal firing and have a
largely physiological source. Cardiac pulsations and respiration-
related artefacts can cause significant correlated signal changes in
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the vicinity of large blood vessels and throughout grey matter,
obscuring spontaneous neuronal fluctuations (Lund et al., 2006). By
measuring cardiac and respiratory traces during acquisition of fMRI
data, the influence of the related physiological fluctuations can largely
be removed, using retrospective correction techniques (Glover et al.,
2000; Hu et al., 1995). Other techniques have been developed that do
not require physiological recordings (Beall and Lowe, 2007; Chuang
and Chen, 2001; Perlbarg et al., 2007). However, further physiological
sources of noise in the fMRI signal remain uncorrected by these
methods. In particular, low frequency BOLD fluctuations have been
associated with changes in the level of arterial carbon dioxide (CO2) in
the frequency range 0–0.05 Hz (Wise et al., 2004) resulting from
changes in the breathed-volume (respiration volume over time —

RVT) (Birn et al., 2006) and changes in the rate of cardiac pulsation at
∼0.08 Hz (Shmueli et al., 2007). These sources of noise can artificially
inflate connectivity measures since they introduce global, spatial
coherence across the brain.

Global signal regression, otherwise known as orthogonalization to
the global signal, is often performed as a processing step in an attempt
to account for several potential sources of physiological noise. In this
technique, the global signal, calculated by averaging the time series
over all voxels in the brain, is used as a regressor in a general linear
model (GLM) to remove the associated variance (Desjardins et al.,
2001; Macey et al., 2004). This technique assumes that fMRI
experiments are concerned with local changes in neuronal activity
and that global signals represent uninteresting sources of noise.
However, this assumption is only accurate when the global signal and
experimental conditions are orthogonal to each other, that is,
uncorrelated. The majority of the methodology literature regarding
global signal regression examines its effect on task paradigms.
Whether findings from such research are applicable to seed-based
connectivity studies is unknown.

The global signal correction technique has beenwidely used in the
PET imaging literature to remove global blood flow fluctuations with
some debate as to the appropriate removal method (Andersson et al.,
2001; Arndt et al., 1996; Fox et al., 1988; Friston et al., 1990; Ramsay et
al., 1993). It has been suggested that defining the global signal as the
average over all voxels can introduce a bias since the resulting time
course will not be orthogonal to the task-induced activations
(Andersson, 1997; Strother et al., 1995). Given that voxels responding
to the experimental task are included in the global regressor, this
correction technique will significantly influence the results by under-
estimating true activation levels and by introducing deactivations.

The global signal explains a large proportion of spatial variance in
PET imaging (Fox and Mintun, 1989; Friston et al., 1990). Whether
removal of this global signal is prudent in fMRI studies of task-related
activity is a matter of debate. In spatially smoothed fMRI data, the
global signal was shown to be strongly influenced by the performance
of a behavioural task but inclusion of this signal as a covariate did not
reduce sensitivity (Aguirre et al., 1997). Also, including the global
signal covariate in a general linear model reduced spatial coherence
and subsequently stabilised false-positive rates (Zarahn et al., 1997).
However it has also been demonstrated that if the global signal is
strongly correlated with experimental manipulations, considerably
different results may be obtained. Aguirre et al. analysed an fMRI
dataset in which subjects made button presses to brief intermittent
stimuli both with and without covariation for the global signal and
found that global signal regression reduced the spatial extent and
intensity of positively activated regions whilst introducing spurious
negatively activated areas (Aguirre et al., 1998a). Interestingly, these
negative regions map out what is now known as the default mode
network, a network shown to be anti-correlatedwith attentional tasks
(i.e., deactivated during attention demanding tasks). Although the
authors state that these areas “did not have a significant relationship
with the task”, global signal regression may have helped bring these
true deactivations to light.
Five different methods of global normalization in fMRI were
compared by Gavrilescu et al., namely grand mean session scaling,
proportional scaling, ANCOVA, a masking method and an orthogona-
lization method (Gavrilescu et al., 2002). The orthogonalization
method, first proposed by Desjardins et al. (2001), was shown to
perform better than other methods and is essentially the same as the
global signal regression technique. However, it can, nonetheless,
decrease the sensitivity of statistical analyses and induce artefactual
task deactivations. Using both a high and low arousal emotional task,
Junghofer et al. showed that the validity of proportional global signal
scaling varied as a function of the emotional arousal of the stimuli
(Junghofer et al., 2005). The high arousal condition violated the
assumption of orthogonality between the global regressor and the
experimental condition leading to a reduction in positively activated
areas and “widely distributed artificial deactivations”, none of which
made sense in terms of known emotional and default mode areas.

It is clear that global signal regression can cause reductions in
sensitivity and can introduce false deactivations in studies of task
activation since the assumption of orthogonality can be violated when
the experimentally-induced activations contaminate the global signal.
By definition, the experimental condition in resting state data is
undefined. Although it is known that resting state fluctuations are
low-frequency, the exact timing, spatial extent and relative phase
between areas are unknown andmay vary from session to session. The
degree of correlation between the global signal and the resting state
fluctuations cannot therefore be determined, and thus global signal
regression could lead to spurious results in seed voxel correlation
analyses of resting state data.

In a seed voxel analysis, a common method for computing
functional connectivity, a time series is chosen in the brain that is
hypothesized to represent fluctuations-of-interest. The correlation
value between this time series and every other voxel indicates the
extent of functional connectivity between the voxels. Using this
connectivity analysis, previous studies have claimed that the brain is
intrinsically organized into dynamic, anti-correlated networks (Fox
et al., 2005; Fransson, 2005; Greicius et al., 2003; Kelly et al., 2008).
These studies, however, have all used global signal regression as a
pre-processing step. The default mode network is termed the task-
negative network since it deactivates during a wide range of tasks.
Its anti-correlated network is termed the task-positive network
since it represents regions that increase in activity when default
mode areas decrease. If the global signal is uncorrelated with the
resting state fluctuations as represented by the seed voxel, then the
finding of a task-positive network (anti-correlated with the task-
negative network) at rest is valid. If, on the other hand, this is not
the case, the interpretation that the brain is organized into anti-
correlated networks may be brought into question since it is based
on results that are contaminated by the global signal regression pre-
processing step.

The extent to which global signal regression affects seed voxel
functional connectivity analyses was investigated. This paper is
organized into four sections (theory, simulations, breathing and visual
data, and resting state data), each of which addresses a different
aspect of resting state fluctuations and how they are influenced by
global signal regression. The theory demonstrates that mathemati-
cally, regardless of the characteristics of the resting state fluctuations,
global signal regression will always result in a negative mean
correlation value during a seed voxel functional connectivity analysis.
Three sets of simulations were performed. The first is an empirical
demonstration of the theory. The second reveals that if similar resting
state fluctuations (represented by a sine wave) are present in all
voxels, functional connectivity analyses will determine that approxi-
mately half are anti-correlated with a seed after global signal
regression. The relative phase of fluctuations in the seed voxel and
other regions can bias those regions to become anti-correlated,
serving as a possible explanation for the clustering of anti-correlated
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areas in the brain. The third simulation investigated the behaviour of
these anti-correlations as the spatial extent of voxels containing
resting state fluctuations increases from zero voxels to the entire
brain. The challenge in resting state functional connectivity studies is
that the timing and location of spontaneous neuronal activation and
global nuisance fluctuations (such as respiration) are unknown. Since
it is impossible to systematically alter resting fluctuations, visual task
activation was used in the breathing and visual data section to create
localisable connectivity maps similar to those generated in resting
state correlation studies. A comparatively global fluctuation was
introduced into the data using a breath-holding challenge. The relative
phase of the two tasks were varied to examine how the influence of
global signal regression on connectivity measures is dependent upon
the relationship between resting state fluctuations and the global
signal, a quantity which, by definition, is unknown. Finally, task-
negative and task-positive regions were defined in resting state data
and changes in correlationmeasure with global signal regressionwere
examined in depth.

Theory

This mathematical proof demonstrates that after global signal
regression, the sum of correlation values with a seed voxel across the
entire brain is less than or equal to zero.

Let each Si(t) be a column vector representing a ith voxel's time
series, i=1,...,N. Since the mean of each voxel's time series can be
removed during regression, assume that each voxel has a mean of
zero. Let the corresponding time series after global signal regression
be represented by the column vector xi(t).

Regression of the global signal is accomplished by solving

Si tð Þ = g tð Þβi + xi tð Þ ð1Þ

where the global signal (a column vector) is given by

g tð Þ = 1
N

∑
N

j = 1
Sj tð Þ: ð2Þ

Estimation of the regression coefficient, βi, in Eq. (1) is given by

βi = g tð ÞTg tð Þ
� �−1

g tð ÞTSi tð Þ

The average of the βi coefficient across all voxels is given by

1
N

∑
N

i = 1
βi = ðgðtÞTgðtÞÞ�1gðtÞT 1

N
∑
N

i = 1
SiðtÞ = ðgðtÞTgðtÞÞ�1gðtÞTgðtÞ

Thus,

1
N

∑
N

i = 1
βi = 1 ð3Þ

Inserting Eq. (2) into Eq. (1) gives

Si tð Þ = βi
1
N

∑
N

j = 1
Sj tð Þ

 !
+ xi tð Þ: ð4Þ

Rearranging Eq. (4) provides the sum of the time series' after global
signal regression:

∑
N

i = 1
xi tð Þ = ∑

N

i = 1
Si tð Þ−βi

1
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Sj tð Þ
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Si tð Þ− 1

N
∑
N
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βi ∑
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j = 1
Sj tð Þ

 !
:

Inserting Eq. (3) gives

∑
N

i = 1
xi tð Þ = 0 8t ð5Þ
Let x1 be the seed voxel in a correlation analysis. Then the sum of
dot products is given by

∑
N

j = 2
x1 tð Þdxj tð Þ = x1 tð Þdx2 tð Þ + x1 tð Þdx3 tð Þ + N + x1 tð ÞdxN tð Þ: ð6Þ

From Eq. (5) we can determine that

x2 tð Þ = −x1 tð Þ−x3 tð Þ−x4 tð Þ−…−xN tð Þ:
Then Eq. (6) becomes

∑
N

j = 2
x1 tð Þdxj tð Þ = x1 tð Þd −x1 tð Þ−x3 tð Þ−x4 tð Þ−…−xN tð Þ½ � + x1 tð Þdx3 tð Þ

+ N + x1 tð ÞdxN tð Þ = −x1 tð Þ:x1 tð Þ:
This implies that the sum of dot products is less than or equal to zero:

∑
N

j = 2
x1 tð Þdxj tð ÞV0: ð7Þ

The sum of correlation coefficients is given by

∑
N

j = 2
cc x1 tð Þ; xj tð Þ� �

= ∑
N

j = 2

x1 tð Þ−μx1

� �
d xj tð Þ−μxj

� �
Nσx1σ xj

where μxi is themean and σxi the standard deviation of the time series
xi(t). Since we have assumed that μxi = 0 for i= 1,...,N, this equation
reduces to

∑
N

j = 2
cc x1 tð Þ; xj tð Þ� �

= ∑
N

j = 2

x1 tð Þdxj tð Þ
Mσ x1σxj

where M is the number of time points. If we assume that standard
deviation values are unbiased across time series with negative and
positive dot products, then the following equation holds:

∑
N

j = 2
cc x1 tð Þ; xj tð Þ� �

V0: ð8Þ

Equation (7) demonstrates that if negative correlations don't exist
before global signal regression, they must be introduced by the
technique. For all voxels that correlate positively with the seed,
negatively correlated voxels must exist to balance the equation. This
is compatible with the previous suggestion that global signal
regression causes correlation strengths to be distributed around
zero (Buckner et al., 2008; Vincent et al., 2006), although the
equations do not provide any information about the resulting
distribution. This theory section demonstrates that in fMRI data,
after global signal regression, a seed voxel correlation analysis must
find anti-correlations, regardless of the seed voxel chosen or the
signal fluctuations it represents. This fact is a clear problem when
trying to interpret the meaning of negative correlations after using
global regression.

Methods

Simulations

Simulations were performed to test the conclusions of the theory
and to examine its practical implications. Two voxel and three voxel
simulations were carried out using Matlab (MathWorks, Inc.). One
thousand sets of time series were generated, each consisting of two
and three time courses respectively. Resting state fluctuations were
represented in each time series using a sine wave with a randomly
chosen frequency between 0.1 Hz and 0.2 Hz and randomly chosen
amplitude between 0 and 1. To this, Gaussian noise was added with
zero mean and a standard deviation between 0 and 10. Each time
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series lasted 1000 time points with an effective TR of 1 second. For
each set of time series, the global signal was regressed using the GLM
method. In order to verify Eqs. 3 and 5 empirically, the beta weights of
the regression fits were averaged for each set and the sum of the time
courses after global signal regression were calculated. The correlation
coefficients between the first time course and the remaining one or
two time courses in the set were calculated.

In another group of simulations, we investigated the effect of
global signal regression on correlations between time series that
exhibit similar resting state fluctuations that are slightly shifted in
time. Null time series lasting 150 time points with a TR of 2 s were
arranged on a 64×64 grid. A sine wave with a frequency of 0.1 Hz,
amplitude of 1 and whose phase varied progressively along the x-axis
from 0 to π/4 in equal increments was added to each time series to
represent resting state fluctuations. Random Gaussian noise with a
mean of 0 was added to each time series. The standard deviation of
this noise was varied progressively along the y-axis from 0 to 10 in
equal increments. The resulting dataset consisted of a 64×64 grid of
time series with sine wave fluctuations of varying phase and
increasingly large noise components. Global signal regression was
performed by averaging over all 4096 time courses. Three correlation
analyses were performed on the dataset, with and without global
signal regression. The correlation of each time series with a sine wave
of frequency 0.1 Hz and phase of zero was determined. Two 9×9 voxel
regions-of-interest (ROIs) were drawn, one in a high and one in a low
signal-to-noise ratio (SNR) region. The average time series in each ROI
was determined and the correlation of the resulting time series with
each voxel was calculated.

In the phase simulations above, every voxel contained a single
frequency “resting state” fluctuation. A third “spatial extent” simula-
tion investigated the influence of the fraction of voxels containing
resting state fluctuations on correlation analyses when global signal
regression is employed. One hundred artificial time series were
generated lasting 300 s with a TR of 2 s. In each time series,
physiological noise was simulated using a sine wave of 0.03 Hz
(representing global signal changes, such as those induced by changes
in depth of breathing) with random amplitude between 0 and 1 and
random phase between 0 and π/4. Gaussian noise with a standard
deviation of 1 was added. Resting state fluctuations were represented
by a 0.1 Hz sine wave whose amplitude was 1 and 10 in low SNR and
high SNR simulations respectively. This fluctuation was inserted in N
of the 100 time courses, where N ranged from 1 to 99. For each
iteration of the simulation, the global signal was calculated by
averaging across the 100 time series and global signal regression
was performed. A seed voxel time series was generated by regressing
the same global signal from the 0.1 Hz sine wave resting state
fluctuation. The average seed voxel correlation across theN voxels was
determined along with the average across all remaining voxels. This
whole process was repeated 100 times allowing study of the
correlation values as a function of the percentage of voxels containing
the fluctuations-of-interest.

Breath holding and visual data

This task combines both a breath hold block design and a visual
block design task, varying the phase between the two in different
conditions. The visual task produces a relatively small, focal activation
in the visual cortex and was used as a model of resting state
fluctuations. The global signal was modulated using a breath hold task
that produces a large global BOLD signal increase (Kwong et al., 1992;
Li et al., 1999). By combining the two, one can determine the effect of
regression of a known global modulation on known focal “resting
state” fluctuations (which are unknowns in actual resting state data).
The extent to which the relative phase of the global and local signal
changes influence local “resting state” connectivity measures was
investigated.
Eight young healthy adults were scanned on a 3 T General Electric
HDx MRI scanner equipped with a 16-element receive-only brain
array coil under an IRB approved protocol after providing informed
consent. Single shot, full k-space gradient recalled EPI was used for all
functional scans. Whole brain coverage fMRI scans with 27 sagittal
slices were collected with the following scan parameters: TR=2 s,
TE=30 ms, matrix=64×64, FOV/slice=24 cm/4 mm, flip angle=90°,
reps=150. Physiological data were recorded during each scan using a
pulse-oximeter placed on the left index finger and a pneumatic belt
positioned at the level of the diaphragm.

The subjects experienced five conditions: VisOnly, Synch, Synch+10s,
Asynch and RandVis (counterbalanced across subjects). In the VisOnly
condition, an 8Hz contrast reversingflashing checkerboard stimuluswas
presented using rear screen projection in a block design fashion 30 s OFF
(grey fixation)/20 s ON. The subjectswere asked tofixate on a cross in the
centre of the screen. In the remaining conditions (Synch, Synch+10s,
Asynch andRandVis), the subjectswere asked to performabreath holding
task. This consisted of a 30 s countdown presented centrally with paced
breathing instructions, that is, “Breath In” and “Breath Out”, each lasting
2 s. When the countdown reached zero, the subjects are asked to hold
their breath for 20 s with a similarly presented countdown. The task was
timed to present “Breath Out” directly before the “Hold Breath”
instruction so that breath holding occurred after expiration. In the
Synch, Synch+10s and Asynch conditions, a visual task identical to the
VisOnly condition was presented together with the breath holding task
with only the relative phase of the two tasks differing. In the Synch
condition both the visual stimulus and breath hold onsets coincided
temporally. In the Synch+10s condition, the visual task was delayed by
10 s with respect to the breath holding task. Since responses to breath
holds are typically delayed compared to BOLD activation responses, the
aimof this conditionwas to cause thepeakBOLDresponse foreach task to
overlap temporally. In theAsynch condition, the visual taskwaspresented
so that its ON period ended when the ON period for the breath holding
task commenced. Finally, in the RandVis condition, an 8 Hz visual
checkerboard, presented in an event-related designwith a variable inter-
stimulus interval, was displayed along with the breath hold task (30 s
normal breathing, 20 s breath hold) such that for each second long
interval there was a 50% probability of checkerboard presentation.

Data were pre-processed using AFNI (Cox, 1996). Reconstructed
images were first corrected for motion using a rigid-body volume
registration. Physiological noise correction was performed using the
RETROICOR technique to remove unwanted signal oscillations at
aliased cardiac and respiration frequencies (Glover et al., 2000). Data
were time shifted to align separate slices to the same temporal origin.
Voxel time series were bandpass filtered between 0.01 Hz and 0.1 Hz
and converted into percent change by removing and then dividing by
the mean. Global signal regression, using all voxels within the brain,
was carried out using a GLM. Datasets with and without the global
signal removed were carried forward into the next analysis step.

In each subject, a functionally defined visual cortex mask was
generated using the VisOnly condition (without global signal
removed) by correlating each voxel's time series with the relevant
task response and thresholding at Pb1x10−6. This task-induced
response was modelled by convolving the task timing with a
Gamma-variate haemodynamic response function (irf(t) = k tr e− t/b

where k is a scaling factor, r=8.6 and b=0.547; Cohen, 1997). Similar
correlation analyses were performed on all conditions, with and
without global signal removed, using the relevant visual task model.
Correlation values were averaged across visual cortex and then across
subjects. A seed region correlation analysis was performed by
determining the 10 highest t-statistic voxels in visual cortex in the
VisOnly condition (without global signal removed). The seed region
time series was generated by averaging over these voxels in each
condition. The correlation coefficient between this time series and the
time course in each voxel of the brain was determined. For each
subject, a histogram of these correlation values for each conditionwas
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calculated using voxels present in the visual cortex maps and also
across all voxels in a whole brain mask. Group correlation maps were
determined by converting each map to the standard stereotaxic
coordinate system of Talairach and Tournoux (1988) using a 12-part
linear transformation, averaging the arctanh of these maps and
returning the tanh of the average (Fisher transformation).

Resting state data

Two resting state scans, each lasting 5 min, were collected on
twelve young healthy adults with scanning parameters identical to the
breath holding and visual data. Similar pre-processing steps were
performed. After concatenation, the percentage change datasets, with
and without global signal regression, were converted to the Talairach
coordinate system as above. During this step, the datawere resampled
to 3 mm cubic voxels and spatially blurred using a Gaussian kernel
with 6 mm full-width-at-half-maximum isotropic deviation.

Correlation maps were produced by extracting time courses from a
seed region in the posterior cingulate/precuneus (PCC). This seed
region was defined by drawing a 12 mm diameter sphere cantered
around the previously published Talairach coordinate [−5, −49, 40]
(Fox et al., 2005; Shulman et al., 1997). Time courses fromvoxels in this
region were averaged and the correlation coefficient between this
seed time course and each brain voxel was calculated. This process
was carried out on the resting data with and without global signal
removed. Group maps were obtained by averaging correlation values
across subjects using a Fisher transform (for each voxel in Talairach
space, the arctanh of the correlation value for each subject was
averaged and the tanh of this average was returned). The individual
subject correlation maps were thresholded at a correlation value of
±0.35 corresponding to a P-value of 9×10−10 (which, when corrected
for multiple comparisons using a Bonferroni correction, equals
P=4.1×10−5). From the maps on which global signal regression was
performed, the task-negative network (i.e. the network that deacti-
vates during a task and is more active during rest) was defined on a
subject-by-subject basis as those voxels that passed threshold and
displayed a positive correlation with the PCC ROI. Since the PCC lies
within the task-negative network, every region that positively
correlates with it also lies within that network. On the other hand,
the task-positive network (i.e. the network anti-correlated with the
task-negative network) was defined as those voxels passing threshold
displaying negative correlations with the PCC.

The correlation values in each of the task-positive and task-
negative networks were compared in both the resting datasets with
and without global signal removed. Since global signal regression is
hypothesized to eliminate uninteresting low-frequency fluctuations
from the data, the correlation values in the task-positive and task-
negative networks were compared with a method that purports to
remove low-frequency BOLD fluctuations due to changes in breathing
depth. Respiration volume per time (RVT) correction was performed
by determining the envelope of the respiration trace, subtracting the
minimum from the maximum, dividing by the period of the
respiration and then removing this time course (and time-shifted
replicas) from each voxel using multiple linear regression (see Birn et
al. for more details, Birn et al., 2006). Correlation values were averaged
across the task-negative regions for each subject for the three
conditions: without global signal or RVT correction, with RVT
correction and with global signal regression. Similar averaging was
performed in the task positive regions. Histograms of the correlation
values across the entire brain, with and without global signal
regression, were calculated.

Average time series in both the task-positive and task-negative
networks were calculated on a subject-by-subject basis for datasets
with andwithout regression of the global signal. Correlations between
all combinations of these time series and the global signal were
determined. The phases between these time series before global signal
removal were calculated by determining the maximum correlation
between both at multiple time lags. The percentages of voxels in the
brain above threshold that positively and negatively correlated with
the PCC region both before and after global signal removal were also
calculated.

Results

Simulations

All 1000 sets of time courses in both the two voxel and the three
voxel simulations demonstrate that Eq. (3) is true: the beta weights
from the GLM average to exactly 1 (±∼10−15) in all cases. Each time
point summed across all time series in the set after regression of the
global signal is exactly zero (±∼10−13), demonstrating Eq. (5). The final
correlation between the time courses after global signal removal in
the two voxel case is exactly −1 (±∼10−15) in all 1000 simulations. In
the three voxel case, the sum of correlation values is always less than
zero with a mean of −1.02 and standard deviation of −0.05 over the
1000 simulations. The maximum value of the sum was −0.83. This
confirms Eq. (8) by demonstrating that after regression of the global
signal, the sum of correlation values to a seed voxel is less than or
equal to zero, regardless of the fluctuations it represents.

The phase simulation results are shown in Fig. 1. Correlations with
the resting state sine wave demonstrate that the fluctuations are
detectable in the majority of voxels even in low SNR time courses.
Phase shifting the fluctuations by up to π/4 has little effect on
detectability until global signal regression is performed, after which
approximately half of the voxels display a negative correlation with
the resting state sine wave. Correlations with averaged time series
from ROIs show that the resting state fluctuations remain highly
visible, whether the ROI is drawn from a high SNR (ROI1) or low SNR
(ROI2) area, when global signal regression is not performed. After such
a procedure, however, approximately half the voxels (52% and 48% for
ROI1 and ROI2, respectively) display a negative correlation with the
ROI. The phase simulations demonstrate that global signal regression
can introduce negative correlations between time serieswith identical
signal modulations that are slightly shifted in time.

The spatial extent simulations reveal that seed voxel correlation
values are influenced by the size of the region containing the resting
state fluctuations (see Fig. 2). Regressing the global signal from the
data reduces correlation values as the spatial extent increases in both
voxels containing fluctuations and voxels containing noise. Since noise
voxels are not correlated with the seed voxel beforehand, global signal
regression introduces negative correlations. In the low SNR case, this
is a gradual decrease as spatial extent grows finally reaching a value of
−0.3. In the high SNR case, this reduction is more rapid with the
correlation values in noise voxels reaching this value when only 10% of
voxels contain fluctuations. Both SNR cases are extremes and the
situation in real data is most likely to be somewhere between the two.
These simulations demonstrate that the reduction of correlation
values due to global signal regression is dependent on the number of
voxels containing fluctuations with greater spatial extent leading to a
greater decrease. Not only does global signal regression reduce
correlations in areas containing fluctuations, it introduces negative
correlations in pure noise voxels.

Breath holding and visual data

The breath holding and visual data demonstrate that global signal
regression can severely affect the outcome of resting state correlation
analyses, particularly when the global signal (as represented by breath
holding) and the “resting state” fluctuations (as represented by visual
activation in this study) are highly similar. When BOLD signal
increases due to visual activation and breath holding overlap
temporally, as in the Synch+10s condition (average correlation



Fig. 1. The results of the phase simulation are shown. Each panel displays correlation values on 64×64 voxel grid. The time series for each voxel consisted of a sine wave representing
resting state fluctuations with a frequency of 0.1 Hz and a phase that varied for voxels progressively from 0 to π/4 along the x-axis. Random Gaussian noise with a mean of 0 and a
standard deviation varying from 0 to 10 along the y-axis was added. The first column shows correlations to a 0.1 Hz sine wave with zero phase. The remaining columns depict
correlation values to a time series averaged over the ROIs shown. This figure demonstrates that small phase differences between time series can lead to negative correlations after
global signal regression.
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between visual task regressor and global signal was 0.61±0.10),
regression of the global signal severely reduces correlation values (see
Fig. 3). In contrast, correlations are unaffected in the VisOnly condition
since the global signal (which was not modulated my breath holding)
is unrelated to the fluctuations-of-interest (correlation between task
regressor and global signal: 0.08±0.16). Similarly, when the global
modulation (breath hold) is unrelated to the “resting state” fluctua-
tions (visual activation), as in the RandVis condition, global signal
regression only has a small impact on correlation values. The extent to
Fig. 2. The spatial extent simulations show how correlation values vary after global
signal regression as a function of the percentage of voxels that contain resting state
fluctuations. Red lines represent the average correlation over voxels that contain a sine
wave (representing a resting state oscillation) whereas blue lines depict the average
correlation over the remaining noise voxels. Both low SNR (amplitude of sine wave
equals standard deviation of noise) and high SNR (amplitude of sine wave 10 times
greater) simulations are shown, in solid and dashed lines respectively. Significance lines
showing Pb0.001 are depicted. These simulations demonstrate that the reduction of
correlation values due to global signal regression is dependent on the number of voxels
containing resting state fluctuations with greater spatial extent leading to a greater
decrease. Voxels containing purely random noise becomemore negatively correlated as
spatial extent increases.
which the global signal and the “resting state” fluctuations in the seed
region are similar (i.e., the correlation value between the visual and
global task) predicts almost exactly (r= 0.98) how much the global
signal regressionmethodwill change the average correlation values in
voxels containing the fluctuations.

Histograms of seed region correlation values across the visual
cortex and across thewhole brain are shown in Fig. 4. In all conditions,
the distribution of correlation values in the visual cortex is skewed
towards high values as one would expect. Global signal regression has
little effect on the distribution of visual cortex correlation values in the
Fig. 3. Correlation values averaged over the visual cortex and over subjects are shown
for the combined breath holding and visual task. Each of the five conditions
demonstrate how the relative phase of global (breath hold) and “resting state” (visual)
signal changes affects the correlation measure with and without global signal
regression (red and blue lines respectively). The significance levels for all comparisons
were determined using paired t-tests: VisOnly P=0.42, Synch P=0.23, Synch+10 s
P=8.9×10−6, Asynch P=7.7×10−4, RandVis P=0.045. When the phase of the breath hold
and visual responses are the same (Synch+10s condition), global signal regression
causes a large reduction in correlation value in the visual cortex.



Fig. 4. The distributions of correlation values in the seed region correlation analyses are shownwith each subject represented by a different colour. Each of the five rows displays one
of the five breath holding and visual task conditions. Distributions drawn from only the visual cortex are displayed on the left with whole brain distributions on the right, for datawith
and without global signal regression. The distributions from the visual areas show that global signal regression is not revealing underlying neuronally-related BOLD signal changes as
wewould like it to. Distributions in the visual cortex are broadened instead of sharpened by this technique and negative correlations are introduced. The whole brain distributions on
the right demonstrate that global signal regression forces a bell-shaped curve, centred on zero, regardless of the relative phase of global and “resting state” changes.
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VisOnly condition since the activation response and the global signal
are unrelated. In the other conditions, global signal regression tends to
widen the distribution towards lower values. Qualitatively, the
greatest broadening of the distributions occurs in the Synch+10s
condition when the global signal is most correlated with the visual
task regressor representing resting state fluctuations (0.61±0.10),
forcing correlation values to extend into the negative range. If global
signal regression properly removes global manipulations, all distribu-
tions should resemble the VisOnly condition after performing the
technique.

The whole brain distributions show that the breathing task causes
a global modulation that skews the distributions when no global
signal regression is performed. In all conditions, independent of the
relationship between the global signal and the “resting state”
fluctuations, global signal regression causes these skewed distribu-
tions to become more bell-shaped and centered on zero, thus
introducing negative correlations. Assuming that global signal
regression removes purely respiration related changes to reveal true
neuronal fluctuations, the seed region connectivity maps after global
correction should be identical, regardless of the breathing manipula-
tion. Fig. 5 shows that large differences exist in the resulting
correlation maps, none of which spatially resemble the VisOnly
condition. Although voxels from the visual cortex are most positively
correlated with the seed region in all conditions, areas that negatively
correlate vary across breathing manipulations. The spatial organiza-
tion of the negative voxels introduced by the correction is dependent
upon the relative phase of the fluctuations-of-interest and the global
signal. Coupled with the fact that highly correlated voxels remain
highly correlated, this suggests that, after global signal regression,
positive correlations may be more reliable than negative correlations.
The extent to which these maps differ shows that global signal
correction does not reliably remove the global artefact induced by the
breath holding task.

Resting state data

Intrinsic correlations between a seed region in the PCC and all
other voxels in the brain during a resting task are shown in Fig. 6. After
global signal regression, approximately the same number of voxels are
negatively correlated with the PCC seed region (task-positive net-
work) as are positively correlated (task-negative network). When
global signal regression is not performed, however, very few



Fig. 5. Three axial slices of correlations with the PCC region averaged across subjects are shown for each of the Breath Holding and Visual Task conditions. Without global signal
regression, correlation values can be high across the entire brain. The Asynch condition shows that this is not the case when global signal and “resting-state” fluctuations are out of
phase. If global signal regression performed the intended correction, one would expect all resulting maps to be similar. Large variation exists in the pattern of activated and
deactivated regions across the conditions.
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negatively correlated voxels pass threshold. The spatial distribution of
the positive correlations is similar in both cases.

To probe the data more quantitatively, task-negative (correlated
with the PCC) and task-positive (anti-correlated with the PCC) regions
were defined for each subject. Average correlation values in these
regions are shown for each subject in Fig. 7. Three conditions are
depicted: the first draws values from data that have not been
corrected for global fluctuations, the second from data that has
undergone RVT correction and the third from data which has had the
global signal regressed from it. RVT correction has been shown to
remove some of the low-frequency fluctuations due to variations in
depth of breath which causes spatially widespread confounds across
grey matter and regions with large vessels including the PCC area
(Birn et al., 2006). Unlike with global signal regression, correlations
with the PCC did not greatly reduce when this correction was
performed. Correlation values from the RVT corrected data are almost
identical to those from the uncorrected data in both the task-negative
and task-positive regions. On the other hand, global signal regression
reduces correlation values in both areas. Reductions in the task-
negative areas vary from 0.02 to 0.25 across all subjects. In task-
positive areas, there is a greater variability across subjects in
correlation values from the uncorrected data, ranging from −0.24 to
0.49 with a standard deviation of 0.23. Themajority of subjects display
strong correlations with the PCC in task-positive areas when global
signal regression is not performed. After removal of the global signal,
task-positive areas are strongly anti-correlated with the PCC and
variability in the correlation values across subjects is greatly reduced
(average correlation value is −0.42±0.07).

Histograms of the correlation values for each subject are shown in
Fig. 8. The distribution is highly skewed towards positive values when
global signal regression is not performed. Those subjects that show a
negative correlation in task-positive areas in Fig. 7 correspond to the
subjects with distribution peaks closest to zero. After global signal
regression, the distributions revert to a more bell-shaped curve
centred on zero. The tails of the distributions stretch further into the
positive than into the negative correlation values. If correlation values
in each voxel are compared on a voxel-by-voxel basis, before and after
removal of the global signal, voxels on the high end of the distribution
remain on the high end and voxels on the low end remain on the low
end (data not shown). Qualitatively, comparing the distributions with
those of Fig. 4, the resting state data appear to correspond most to the
Synch+10s condition. In this condition, the global signal was most
highly correlated with the fluctuations-of-interest. If there are indeed
two populations of voxels that are highly anti-correlated with each



Fig. 6. Correlations to a seed region in the PCC averaged across all subjects using a Fisher transform are shown with and without correction for the global signal. The task-positive
network is visible only after global signal regression. Since global signal regression changes the distribution of correlation values (see Fig. 8), it would be incorrect to use the same
threshold for both maps. To enable a fair comparison, we chose a correlation value such that all voxels that positively correlate to the PCC and that passed threshold would comprise
15% of the total number of voxels. Using these thresholds, the default mode network is visible bothwith andwithout global signal regression, but negatively correlated voxels are only
visible after the global correction. Fig. 7 and the distributions in Fig. 8 demonstrate that lowering the threshold in the map that retains the global signal would not reveal negatively
correlated voxels in the task-positive network.
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other, each including a large proportion of voxels in the brain, one
would expect to see a bimodal-like distribution after global regres-
sion. A widened distribution in Subject 5 or the bump around −0.5 of
Subject 9's distribution may be evidence for this. However, the
majority of subjects demonstrate no such behaviour suggesting the
bell-shaped distributions of the correlation values are an artefact of
the mathematics of the global signal regression procedure which
forces negative correlations to appear.

Table 1 shows the sizes of regions that correlate both positively and
negatively with the PCC before and after global signal regression.
When the global signal is included, areas with a significantly positive
correlation can constitute as little as 25% of voxels up to almost the
entire brain (96%). Negatively correlated voxels are almost non-
existent with 0.59% being the greatest percentage in the twelve
subjects. After global signal regression, positive correlations are
reduced and negative correlations are increased (task-negative
region=9.65%±5.12%, task-positive region=5.11%±4.65%). Phase dif-
ferences between the task-negative and the task-positive time series
before global correction range from 0.2 s up to 9 s. Comparisons with
the global signal show that both the task-negative and task-positive
time series correlate highly without removal of the global signal (0.75
±0.19 and 0.67±0.18 respectively) and also display a large range of
correlation values, from −0.51 to 0.62. After global signal regression,
task-negative and task-positive time courses become highly nega-
tively correlated with an average of −0.71±0.14. The difference in
correlation values before and after global signal regression spans a
large range from 0.46 to 1.38.

The resting state data demonstrate that, when using the PCC as a
seed region in a correlation analysis, anti-correlated networks are not
significantly present until global signal regression is performed. As
demonstrated in the breath holding and visual task, global signal
regression renders the distribution of correlation values to be bell-
shaped, centred on zero. After global signal regression, subject-to-
subject variability in correlation values drawn from task-negative and
task-positive areas is greatly reduced. Such regularized trends across
subjects are a consequence of the global signal regression method.
Discussion

The simple fact that any two time series become perfectly anti-
correlated when their global signal is regressed from each should give
cause for concern when interpreting anti-correlations. If the first time
series contains a signal modulation of interest, the second will be
negatively correlated with the first after global signal regression,
regardless of the signal fluctuations it contains. Extending this concept
to multiple time series, the theory demonstrates that global signal
regression changes voxel time series such that approximately half
become negatively correlated with a seed voxel. Due to the circularity
of the technique (i.e., deriving a nuisance regressor from the data
itself), all voxels could have similar interesting signal fluctuations but
will display a range of seed voxel correlation values from highly
positive to highly negative after its implementation. These findings
alone should cause fMRI researchers to question the efficacy of this
technique as a correction tool.

Resting state data are unique in that the researcher does not have a
priori knowledge of task signal modulations. The simulations and
breath holding data yield an insight into the effect global signal
regression has on known fluctuations. For example, the spatial extent
simulations show that time series in noise voxels outside an ROI
containing resting state fluctuations become negatively correlated
with those fluctuations when global signal regression is implemented.
Not only does global signal regression reduce correlations in areas
containing fluctuations, it introduces negative correlations in pure
noise voxels. The degree of negative correlation depends on the extent
of the ROI and the signal-to-noise ratio of the fluctuations. These
simulations demonstrate that if there are large scale resting state
networks in the brain, their influence on the global signal will force
purely noise voxels to become negatively correlated with the resting
network (e.g. the PCC region). When the SNR of the fluctuations is
suitably high, only ∼10% of the brains voxels need contain these signal
modulations for the remaining voxels to become negatively corre-
lated. The information in Table 1 suggests that in resting state data the
task-negative network is large enough for this situation to occur.



Fig. 7. Average correlation values across the task-negative (top panel) and task-positive
(bottom panel) regions are shown for all subjects. Three conditions are depicted: 1)
without any global signal or RVT correction, 2) with RVT correction to remove low-
frequency fluctuations related to breathing depth and 3) with global signal regression.
RVTcorrection has little impact on correlation values in both the task-negative and task-
positive areas. Before global signal regression, task-positive areas can be highly
correlated with the PCC region with only two subjects showing small negative
correlations. Global signal regression causes all task-positive areas to become negatively
correlated and reduces the variability across subjects.

Fig. 8. The distribution of correlation values to the PCC across all voxels in the brain for
each subject are shown before (top panel) and after (bottom) global signal regression is
performed. As with the results shown in Fig. 4, global signal regression causes the
distributions to become bell-shaped and centred on zero.
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The purpose of global signal regression is to remove any confounds
that maymask neuronally-induced fluctuations. When confounds and
resting state fluctuations are of similar frequency, as in the Breath
Holding and Visual Data, their relative phases can severely affect the
detectability of activation. In seed connectivity analyses where an
explicit breathing confound exists, if global signal regression was
completing the intended correction properly, one would expect the
resulting connectivity measure distributions to resemble those of the
VisOnly condition. However, this is not the case: global signal
regression introduces negatively correlated voxels into the visual
cortex. Even when no relationship between the global confounds and
the fluctuations-of-interest exist (as in the RandVis condition), global
signal regression does not sharpen the connectivity measure
distributions as it should. These data demonstrate that global signal
regression does not perform a correction that reveals the underlying
neuronally-induced fluctuations.

In the Breath Holding and Visual Data, since the visual cortex
represents such a small proportion of voxels it is expected that the
seed voxels drawn from this area should bear little relation to most
other voxels in the brain. When the breathing task introduces a global
confound, whole brain connectivity measure distributions are
skewed. Removing the global confound with regression results in
distributions that are bell-shaped. This is unsurprising since the time
series resulting from global signal regression are the residuals from a
GLM analysis that assumes a Gaussian noise model. However, the
spatial pattern of activations and deactivations varies depending on
the breathing manipulation (see Fig. 5). This indicates that global
signal regression does not remove the global breathing confound
successfully. Although the visual cortex remains the most positively
correlated area (as it should), negatively correlated areas can be
situated in vastly different regions after global signal regression,
suggesting that, in this case, the negative correlations are not neuronal
in origin but an artefact of the global signal regression method.

The task-positive network is not evident in resting state data until
the global signal is regressed from each time series. This is not a
thresholding artefact; Figs. 7 and 8 demonstrate that lowering the
threshold in the uncorrected map would not reveal negatively
correlated voxels in the task-positive network. If it is possible to see
positive correlations to the PCC before global signal regression, why
are the negative correlations not visible? The standard answer is that
the uninteresting, confounding fluctuations which are removed by the
technique overshadow the underlying neuronally-induced fluctua-
tions. However, removal of low-frequency confounds due to breathing
depth changes using RVT correction barely alters correlation values.
Even if RVT correction does not remove all global signals of interest, it
is a global confound that is known to overlap well with the default
mode network and correlates significantly with the global signal at



Table 1
Descriptive statistics for resting state time series

Sub Size before glob. sig. regr. Size after glob. sig. regr. Neg/Pos phase diff (s) Corrs before glob. sig. regr. Corrs after GSR

% Voxels
with +ve PCC corr

% Voxels
with −ve PCC corr

Task neg
size (%)

Task pos
size (%)

GS/Neg GS/Pos Neg/Pos Neg/Pos

Difference in
corr. values

S1 66.56 0.02 7.01 4.53 2.6 0.77 0.65 0.22 −0.58 0.80
S2 82.67 0.09 4.93 3.80 0.6 0.86 0.84 0.51 −0.79 1.29
S3 25.79 0.00 11.05 3.10 0.8 0.64 0.69 0.07 −0.66 0.73
S4 24.93 0.19 10.01 11.91 6.4 0.62 0.69 −0.08 −0.87 0.79
S5 47.93 0.00 22.65 15.58 5.6 0.20 0.72 −0.51 −0.98 0.46
S6 77.92 0.00 13.82 3.34 5.6 0.85 0.36 0.07 −0.49 0.56
S7 95.77 0.03 7.41 8.31 2.2 0.86 0.73 0.38 −0.70 1.08
S8 95.14 0.00 6.05 0.66 0.2 0.88 0.55 0.18 −0.76 0.95
S9 87.93 0.06 7.32 5.26 1.6 0.89 0.85 0.55 −0.83 1.38
S10 74.03 0.06 4.89 0.52 0.8 0.82 0.93 0.62 −0.61 1.23
S11 51.25 0.59 13.76 3.66 9 0.72 0.35 −0.27 −0.73 0.51
S12 62.76 0.00 6.88 0.72 2 0.85 0.75 0.42 −0.59 1.02

Descriptive statistics for the size of regions (after thresholding at r= 0.35) that correlate both positively and negatively with the PCC before global signal regression are shown for each
subject. Corresponding sizes after global signal regression (i.e., the size of the task negative and task positive regions, respectively) are also given. The phase between average time
series from the task-negative and task-positive regions before global signal regression is reported. Correlations between these two time series and the global signal and between each
other are shown (GS/Neg, GS/Pos and Neg/Pos respectively). The correlation between the task-negative and task-positive time series (Neg/Pos) after global signal regression along
with the difference in correlation value that the global signal caused are also reported. Definitions: +ve = positive, −ve = negative, PCC = posterior cingulate cortex, GS = global signal,
Neg = task-negative time series, Pos = task-positive time series, GSR = global signal regression.
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CC=−0.5±0.13 (Birn et al., 2006). Onewould expect the RVT technique
to somewhat reduce correlation values in the task-positive network.

There also exists a large amount of variability across subjects in the
correlation values in the task-positive areas before any correction is
performed. Comparing these values with the histograms in Fig. 8
shows that subjects with the lowest average correlation values in task-
positive areas (see Subjects 4 and11) have distributions that extend the
furthest into negative values. Voxels that become the most strongly
anti-correlated after global signal regression are the voxels that were
least correlated prior to the regression. This suggests that when global
signal regression distorts the distribution to become bell-shaped and
centred around zero (as shown experimentally), voxels in the task-
positive network always remain on the negative tail. Depending on the
shape of this distribution, their average correlation value before
correction can be both positive and negative. After global signal
regression, the variability in these values is removed since all
distributions are forced to be bell-shaped (thus satisfying the
theoretical prediction that correlation values sum to less than zero).
This implies that the drastic reductions of the correlation values in the
task-positive network are due to the mathematics of converting a
skewed distribution into a bell-shaped distribution centred on zero.
Task-positive areasmay be converted into negative correlations simply
because they are the least correlated with the PCC to begin with.

If the global signal obscures fluctuations related to neuronal firing,
why does the regression of this signal not uncover other positively
correlated areas? Large areas of the brain are significantly positively
correlated with the PCC before removal of the global signal. The task-
negative network produced after global signal regression is always a
subset of these positive areas. The areas that subsequently comprise the
task-negative network can largely be determined by raising the
threshold on the correlation maps without global signal regression
(see Fig. 6). The global correction does not reveal any newareas that are
positively correlated with the PCC. If the neurons firing in the PCC
produced fluctuations that were not correlated to the global confound
but were overshadowed by such a confound, we would not expect the
positively correlated areas to be identical before and after global signal
regression. This suggests that either the global signal is highly
correlated to the PCC neuronal fluctuations or that fluctuations due to
neuronalfiring in the PCC are visible above theglobal signal confound. If
the former were true then neuronal fluctuations in the PCC would be
removed by global signal regression. If the latter were true, then anti-
correlated networks should be visible above the global signal confound
also. Since the task-negative network remains highly correlated after
global signal regression and anti-correlated networks are not visible
before, this suggests that a shifting of distributions by the technique is
the most likely explanation for negatively correlated regions.

If negatively correlated voxels are an artefact of the correction
technique, why are they in spatially contiguous areas and not
randomly scattered throughout the brain? We have shown experi-
mentally that global signal regression forces a skewed distribution to
become bell-shaped, centred on zero and that voxels on the negative
tail of this skewed distribution become themost negatively correlated.
The reason that the task-positive network becomes anti-correlated
after global signal regression is because it is the least correlated
before. But why is it the least correlated? One possibility is that the
correlation is reduced by a spatial heterogeneity in the “global”
respiration related signal changes. Studies have shown that fMRI
signal induced by variations in breathing depth (also reflected in
variations in the end-tidal CO2) have spatial structure and are most
prominent in areas associated with the default mode network (Birn et
al., 2006; Wise et al., 2004). When seed voxels are chosen from the
PCC, an area in the default mode network that is highly contaminated
with breathing rate related confounds, areas outside the default mode
network such as the task-positive regions will likely be the least
correlated with the seed voxels. Also, phase differences can exist
between time series drawn from the task-negative and task-positive
areas and that these time series can have a low correlation value
between them even though both are highly correlated with the global
signal (see Table 1). This could be due to differences in vascular supply
or haemodynamic properties that are unrelated to neuronal firing. The
phase simulations show that this technique can introduce negative
correlations between time series that display identical resting state
fluctuations that are slightly shifted in time. The largest phase change
in these simulations corresponds to a time delay of between 1.25 s and
12.5 s for frequencies between 0.01 Hz and 0.1 Hz. Although values on
the upper end of this range are unlikely to be accounted for by
haemodynamic delays alone, values on the lower end arewithin range
of natural haemodynamic delay variation (Aguirre et al., 1998b;
Handwerker et al., 2004; Saad et al., 2001) suggesting that areas
whose neurons fluctuate simultaneously but whose haemodynamics
vary temporally could display anti-correlations after global signal
regression. Furthermore, underlying neuronal delays in low-fre-
quency fluctuations on the order of seconds between networks
would display high correlations with each other neuronally but would
be deemed anti-correlated after global signal regression. (It should
also be noted that pi/4 was an arbitrarily chosen phase delay and that
if the maximum delay was smaller, similar correlation maps would be
obtained). Spatial smoothing tends to increase the correlation of voxel
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time series with the global signal (Aguirre et al., 1997) and could also
help consolidate sparsely positioned negatively correlated voxels into
contiguous regions.

If global signal regression is a poor choice of correction method,
which techniques should be used to remove noise confounds, be they
physiologically related or not? The circularity of choosing a noise
regressor from the data itself leads to the problems identified in this
study. Confounding regressors derived from external measures, such
as pulse oximeter, respiration belt and end-tidal CO2 readings, should
not suffer from this problem. There exist other techniques that derive
regressors from regions in the fMRI data, such as the ventricles, white
matter, blood vessels and CSF, that may cause less of a problem.
Studies have shown that anti-correlated networks do not exist after
regression of movement, ventricle and white matter signals (Fox et al.,
2008; Weissenbacher et al., 2008) and therefore these correction
methodsmay not cause the same artefact as global signal regression. If
a regressor is uncontaminated by the task in which we are interested
(in this case the resting state fluctuations), then it may not introduce
anti-correlations. However, the greater the correlationwith the global
signal, the larger a problem such a regression may cause by reducing
true neuronally-related correlations and by increasing numbers of
anti-correlated voxels. Using global signal regression to remove
physiological noise clearly has confounding factors. While the optimal
way to remove physiological noise isn't clear, many of the best current
methods require collection of cardiac and respiration time courses.
Collecting such data should become a standard part of resting state
connectivity studies.

This study has concentrated on correlation-based analyses, the
most popular method employed to detect resting state networks.
Other methods have been used to support the idea that the brain is
organized into independent neuronal networks, for example, k-means
clustering (Golland et al., 2008) or ReHo analysis (Long et al., 2008).
However, removing the global signal is often included as a pre-
processing step. An alternative technique that is now frequently used
to study functional connectivity is independent component analysis
or ICA (Birn et al., 2008; Calhoun et al., 2005; Kiviniemi et al., 2003;
Kiviniemi et al., 2004; Long et al., 2008; McKeown et al., 2003;
McKeown et al., 1998; McKeown and Sejnowski, 1998). With ICA,
statistically independent maps and their associated time courses are
extracted from the data. If the global signal is not removed before this
technique is employed, it must be assigned to one or more
components. Therefore, ICA may have an inherent global signal
regression built into it. The time course for each component
determines the behaviour of the network beyond all other compo-
nents, including those that represent the global signal. Therefore, task-
negative and task-positive networks determined by ICA may have
associated time courses that artificially appear to be anti-correlated.

Global signal regression not only introduces anti-correlated
regions in the brain, it also reduces positive correlation values. If
such a simple mathematical process used as a pre-processing step
affects correlation values so drastically, can we trust correlation
techniques to give a true measure of connectivity in the brain? What
do correlation values actually mean? In a clinical context, do small
differences in connectivity measures between patient groups and
controls really reflect deficits in neuronal connectivity? More
importantly, can the global signal regression introduce false differ-
ences between these two groups? These questions must be taken into
account before we can truly understand resting state neuronal
networks in the brain, their relationships to each other and their
importance in clinical conditions.

Conclusions

In this paper we have shown using theory, simulations, task and
resting state data that anti-correlated networks in the brain may be a
consequence of the global signal regression pre-processing step.
Mathematically, this technique forces approximately half the voxels
in the brain to become anti-correlated with a seed voxel. Global
signal regression of data containing a known neuronal oscillation
corrupted by a known respiration confound demonstrated that this
technique is not successful in removing nuisance global effects and
that the locations of anti-correlated areas are dependent on the
relative phases of the global and seed voxel time series. In resting-
state data, anti-correlated networks were not evident until global
signal regression was performed. Other methods of low-frequency
confound correction, such as RVT, have little effect on correlation
values and, thus, do not reveal such networks. This study has
demonstrated that employing global signal regression as a correction
technique may cause spurious findings of negatively correlated
regions in the brain. Great care should be exercised when interpret-
ing such results.
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